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Abstract An advanced intermediate for the synthesis of bengazole A (1) was prepared by direct
J ST S ja ) Wk LrLlpGiCh DY GerCle
rafting of oxa to a protected side-chain synthon (prepared from D-galuciose) through C-4-directed

ion (oxazole numbering) 1 nt nucleophile, 2-lithiooxazole. © 1998 Elsevier Science Ltd. All
rights reserved.
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Bengazole A (1) and related homologs! are oxazole-containing heterocycles isolated from marine sponges
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Fluconazoie®-resistant Candida strains2® that is dependent upon the presence of the yeast sterol ergosteroi. This
is a property shared by the polyene antifungal agent, amphotericin B but, presently, it is unclear whether 1, like
amphotericin B, forms ion-permeable pores in yeast cell membranes. The complete configuration of 1 was
established in our laboratories by NMR and chiroptical studies,!P but no synthesis of any member of the
bengazole family has been described. In order to investigate the properties of bengazoles and related derivatives,

we embarked on a total synthesis of 1.
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The right hand ring 'B' - a 2,4-disubstituted oxazole - suggests a standard biomimetic synthesis from an

oxazoline.3 A contentious issu

 N-acylserine amide via th responding 03 ! su
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e with this strategy is

fact that successful cyclodehydration-oxidation of serine amides are limited to oxazole products bearing 4-carboxy
substituents. Here, we demonstrate an alternative to the biomimetic paradigm for 2.4-disubstituted oxazole
construction and present a synthesis of an advanced bengazole A intermediate, 2a. A C-1,6 synthon 3 (bengazole
numbering) was grafted directly to oxazole (4) by exploiting a special property of 2-lithiooxazole; ambident
nucleophilicity that directs addition of aldehydes to C-4, rather than C-2.# To our knowledge, this is the first
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apphication of C-4-directed oxazole coupling towards natural product synthesis and one that complements current
synihetic routes t0 oxazoie naturai producis by aliowing introduction of an oxazole ring at a relatively late stage in

assembly without the necessity of proceeding through a substituted oxazole-4-carboxylate.

Side-chain synthon 3 was prepared as follows (Scheme 1).5 D-galactose was converted into the
differentially protected 1-O-benzyl galactoside 5 (8:1 o: anomers) in two steps (69%).5 Stepwise deoxygenation
at C-2 and C-6 were achieved as follows. Thiophenyl ether formation at the primary hydroxyl and desulfurization
to 6 (Raney Ni, 78% for two steps)’ was followed by conversion of the C-2 secondary OH to the methyl 2-0-
xanthate ester and Barton-McCombie deoxygenation with buffered hypophosphorous acid® (67% for two steps)
which afforded the D-2-deoxyfucose derivative 7. Selective removal of the 1-O-benzyl group proved difficult.
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Catalytic hydrogenolysis was ineffective in liberating 8,° and Li" or Na® in liquid ammonia (-33° C) gave high
° I's
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33%), giving 8 in good yield (70%) with little over-reduction.!¢
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Scheme 1

Aldose 8 embodies a masked carbonyl (C-6 of bengazole A) for coupling to 4. Earlier model studies
confirmed that opening of the pyranose ring takes place in the presence of excess organolithium reagent, followed
by 1,2-addition to the unmasked aldehyde.!! Hodges and others have shown that 2-lithiooxazole i adds
electrophiles at C-2 or C-4 via the isomeric ring-opened enolate-isonitrile ii (Scheme 2),* followed by ring closure
but addition of aldehydes occurs preferentially at C-4. Unfortunately, 2-lithiooxazole (8 equiv each of 4 and n-

BuLi, 20 min, -78°, THF-hex, add 8, 1 equiv, warm to 23°, 16 h) failed to deliver addition products with 8.

o 0 R-CH=0
§, —=0 = 0.7 4
\
N N @:CgN@ 48~ N,“H/R
4 2-lithiooxazole i enolate-isonitrile ii OH

Scheme 2 (see Ref. 4)

It seemed the liberated S-alkoxide somehow interfered with 2-lithiooxazole addition to the carbonyl group
which indicated the need for protection at C-5. Transformation of 9 to the 5-O-TBS aldehyde 3 was carried out in
four steps (69%), and addition of 2-lithiooxazole (10 equiv) to 3 under the above conditions now gave a mixture

of epimers 2a and 2b'2 (1:1, separated by HPLC, total 25% yield).}3
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oxazole protons (H-2,5) with that of 1 and other 2.4-disubstituted oxazoles.!b.14 No 2-substituted oxazole by-

products were detected. The faster-migrating epimer was identified as 2a by refunctionalization to 10 (i. n-
BusNF, THF, 50°; ii. Dowex (H*), MeOH, 23" C, 2 h; /ii. dimethoxypropane-acetone, p-TSA) and direct
stereochemical comparison with the known bis-acetonide 1110 by NMR (500 MHz). The 'H chemical shifts and
vicinal coupling constants of H-1,6 in 10 and 11 (CDClI3) were essentially identical (eg. for H-6, 10, 8 5.00,
1H, dd, J = 11.5, 1.5 Hz; 11, 8 4.97, 1H, dd, J = 11.8, 2.1 Hz!P). Studies are underway in our laboratory to
improve the diastereoselectivity and yield of 2a through chelate-controlled addition.

In summary, we have prepared an advanced intermediate 2a towards the synthesis of bengazole A (1) taking
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the oxazole ring. Whereas 2-lithiooxazole o

adds to aldehydes at C-4, 2-lithio-4-
substituted oxazoles revert the regioselectivity of electrophilic addition to C-2.4.15 Taking advantage of this fine-
tuning of substituted oxazole reactivity. compound 2a can now be extended at C-2 of ring 'B' for completion of

the hic-oxazole nuclens of benoazole A The introduction of ring 'A' in 1 reanires annronriate elaharation of a C-
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tormation of 2a, must be diverted to C-5 of ring 'A". To this end, we are proceeding with deployment of our
recently developed C-5 oxazole anion chemistry!6 to address ring 'A’ construction, C-10 stereochemical control

and completion of the synthesis of 1.
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funded by the National Institutes of Health (Al 31660 and AI 39987). The 500 MHz NMR spectrometer was
partially funded through NIH ISIO-RR04795 and NSF BBS88-04739.
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was only partially successful in improving the yield of 8.

To our knowledge, debenzylation of anomeric O-Bn ethers with Ca’-NHz3(/) has not been reported,>2 See
Kigoshi, K.; Ojika, M.; Suenaga, K.; Mutou, T.; Hirano, J.; Sakakura, A.; Ogawa, T.; Nisiwaki, M.;
Yamada, K. Tetrahedron Lert. 1994, 35, 1247-1250 for application to a primary O-Bn ether.

The addition of phenyllithium to en-8 proceeded in 86% yield and 1:2.4 diastereoselectivity in favor of the
desired 6R epimer (bengazole numbering). See Ref. 1b.

Epimer 2a: retention time 16 min (HPLC, silica, 10 mm X 250 mm, 2:3 ethyl acetate:hexane, 3 ml/min),

[a)p = +10.9° (¢ 0.34, CHCI3); IR (NaCl, neat) 3440 (OH) cm~!; TH NMR (300 MHz, CDCl3) § 0.06
(s, 3 H), 0.07 (s, 3H) 0.87 (s, 9 H), 1.15 (d, 3 H, J 5.9 Hz) 13 (s, 3 H), 154(5 3 H), 1.97 (m,
1 { 2 H, 65

\
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4.96 ,
VVVVVV Hz); NMR (CDC 3) (CH3), 18.3 (O),
20.4 (CHa), 25.7 (CH3) 25.8 (CHz), 28 0 (CH3J 36.2 (CHp), 67.0 (CH), 68. 1 (CH), 78.0 (CH), 82.4
(CH), 108.8 (C), 135.0 (CH), 143.0 (C), 151.0 (CH); HRCIMS found m/z 372.2211 (MHM),
C1g§H34NOsSi requires 372.2206. Epimer 2b: r.t. 18 min, [alp = +37.7° (¢ 0.56, CHCI3); IR (NaCl,

ncat) 3430 (OH) cm™'; 'H NMR (300 MHz, CDCl3) 8 0.07 (s, 3 H), 0.08 (s, 3 H), 0.88 (s, 9 H), 115

(d, 3 H, J = 5.8 Hz, H-1), 1.32 (s, 3 H), 1.50 (s, 3 H), 1.92 (ddd, 1 H, J = 14.2, 7.1, 2.5 Hz, H-5),
2.08 (’ddd, 1H,J=142,11.2,33 Hz, H-5), 3.41 (d, | H, J = 6.3 Hz, OH), 3.88 (m, 2 H), 4.24 (ddd
1H,J=11.2,52,25 Hz, H-4),5.0(ddd, | H, J=7.1, 6.3, 3.3 Hz, H-6), 7.64 (d, | H, J = 1.0 H2),
7.85 (d, 1 H, J = 1.0 Hz); 13C NMR (CDCl3) -4.6 (CH3), -4.5 (CH3), 18.3 (C), 20.3 (CH3), 25.9
(CH3), 28.2 (C ) 34.5 (CHy), 65.7 (CH), 67.2 (CH), 74.1 (CH), 82.3 (CH), 108.5 (C), 135.1 (CH),
143.6 (C), 151.3 (CH); HRCIMS found m/z 372.2185 (MH*), C1gH34NO5S1 requires 372.2206.

The modest yield appears to be due, in part, to lower reactivity of 2-lithiooxazole compared to PhLi (se

t

note 11) and competing enolization of 3 and g-elimination. Addition of 1.5 equiv of 2-lithiooxazole
gave only ~7% yleld of 2. We are addressing this problem by modlfymg the preformed 2-lithiooxazole
{cnolate) prior to addition of 3, however other reaction pathways may be operative, see lddon, B.
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